
Astronomical Data Analysis Software and Systems XXVIII
ASP Conference Series, Vol. 523
P.J. Teuben, M.W. Pound, B.A. Thomas, and E.M. Warner, eds.
c©2019 Astronomical Society of the Pacific

U-NetIM: An Improved U-Net for Automatic Recognition of RFIs

Min Long,1 Zhicheng Yang,2 Jian Xiao,2 Ce Yu,2 and Bo Zhang3

1Boise State University, Boise, United States of America

2Tianjin University, Tianjin, China; xiaojian@tju.edu.cn

3Chinese Academy of Sciences, Beijing, China

Abstract. Radio frequency interference (RFI) mitigation is a key phase in data pro-
cessing pipeline of radio telescopes. Classical RFI mitigation methods depending on
the RFI physical characteristics can often fail to recognize some complicated patterns
or result in misrecognition. We developed a novel approach of RFI recognition and au-
tomatic flagging using an improved convolution neural network. The improved U-Net
model (U-NetIM) is constructed based on U-net with much deeper network structure
for more complicated patterns and more components to reduce recognition error caused
by over-fitting. The experiments show that the U-NetIM has better performance on both
precision and recall rate than SumThreshold the most widely used classical method ,
U-Net, a traditional deep learning model and KNN,a typical machine learning model.

1. Introduction

Recognizing and marking the radio frequency interference (RFI) is a key step in the
data processing of radio telescope observations. However, in the traditional recognizing
process, manual intervention is often required, which greatly affects the efficiency of
data processing. This paper aims to explore the application of deep learning technology
in the automatic RFI recognition and provide a technical reference and application for
the optimization of data processing systems adopted by large radio telescopes such as
Five-hundred-meter Aperture Spherical radio Telescope (FAST).

RFI refers to any unwanted signal entering the radio telescope receiving system
Mosiane et al. (2017) and has variety of manifestations. Some RFI are very scattered
in spectrum, affecting a wide range of channels (e.g., wideband); some appear to be
concentrated, affecting only certain channels (e.g., narrowband). Meanwhile, the RFI
can be instantaneous, burst-like pulse (high intensity, short time), or it can occur con-
tinuously over a period of time, like standing waves (intensity changes periodically
with time). Most RFIs are much stronger than common astronomical signals. If the
received signals consist of vertical or horizontal envelopes of a wide or narrow band,
(i.e, discrete or high-intensity occurrence), it is very likely to be contaminate by RFIs
and causes misrecognition.

Current methods of RFI recognition can be mainly divided into the categories of
linear detection, threshold-based algorithms, machine learning and deep learning meth-
ods. For the RFI with repetitive features in the time-frequency domain, like standing
waves, the linear detection methods can achieve very good results. However, it fails
in recognizing more complex signals, such as irregular signals generated by satellite
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operation. The threshold-based algorithm has a good performance on discrete RFIs
when the observation background is relatively stable. The SumThreshold Offringa
et al. (2010) is the most widely used threshold-based algorithm in the existing radio
data processing. However, when a very large number of RFIs are present, affecting
most channels, the threshold-based algorithm will be less effective. The artificial intel-
ligence methods represented by machine learning and deep learning have been widely
used in image recognition, nature language processing, etc., and may can provide im-
provements for the automation and accuracy of RFI recognition.

2. Deep Learning Modeling

The recognition of RFI means to search for regions with significantly increased in-
tensity or certain special features on the time-frequency plane that are similar to the
image. The network model used to process image is mainly Convolutional Neural Net-
work (CNN). The CNN is named after the convolutional operation that multiplies all the
values in the region covered by the convolutional kernel and then adds them together.
The shallow layers extract the texture information of the image. And then the deep
layers integrate the features from the shallow layers for the semantic information. The
Pooling layers are used to filter the information. Finally, through multiple convolutions
and pooling layers, specific information about certain areas of the image is obtained
and then marked.
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Figure 1. Network architecture of the proposed U-NetIM model. Blue boxes rep-
resents multi-channel feature map with the number of channels denoted on the top
and the x-y-size to the left. The arrows denote the flow of operations.

This paper proposed an improved U-NetRonneberger et al. (2015) model (U-
NetIM) of RFI recognition considering the features of the RFI discussed above. More
layer are added to the network to obtain more information form the data for complex
RFI.
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For the narrow band RFIs, they challenge more precise searching and thus small
convolution kernels of size 3 are used. As for wide band RFI, multi-layer convolution
is used to expand the convolution field of view. Since RFI appears intensely, while the
background is relatively stable, it very suitable for Max-pooling to retain more changed
information. Moreover, the random RFI may make the data distribution vary greatly.
Therefore Batch-Normalization is used to scale the data to make the distribution more
stable for better recognition performance.

The proposed U-NetIM model is shown in Fig. 1. The left side of the model is
the down-sampling path, the data enters from the upper left corner, and the result of
each operation (colored arrow) is subjected to the Max-pooling operation. Meanwhile
the results are sent to the corresponding layer in the up-sampling path as copies. After
four operations, the data comes to the bottom of the model, which is followed by the
up-sampling path on the right. The up-sampling path is combined with the information
extracted from the down-sampling path to gradually mark the RFIs on the original data.
After the up-sampling path, the data will reach the upper right corner with the same size
as the input data. After that, the channels of data are reduced to 2 via a fully connected
layer and Softmax operation, which represents the the RFI category corresponding to
each pixel. Finally, the category is taken as the output result.

3. Experiments and Results

This paper tested the U-NetIM model and compared the results with traditional meth-
ods, such as U-Net, KNN, and SumThreshold, in aspect of the accuracy and effi-
ciency of RFI recognition. The experiment used simulation data generated by HIDE
Akeret et al. (2017). The data set is divided into astronomical data as input data and
Ground_Truth as standard recognition results. The Loss is calculated from the output
data produced from neural network and the Ground_Truth. The data set consists of 2
parts, 2900 training data and 76 test data.
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Figure 2. Comparison of experiment results of RFI recognition methods. The
white zones represent recognized RFIs that is compared with accurate RFI patterns

The experiment results are shown in Fig. 2. It can be seen that the recognition
result of the U-NetIM is closest to Ground_Truth (RFI_Mask), the most of RFI patterns
have been correctly labeled and little misjudge occurs.
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The recognition results are then further evaluated using synthetic indicators, as
shown in Fig. 3. First, it can be seen that the U-NetIM achieves the highest scores
for all indicators. It can not only identify more accurately, but also more completely.
Second, it clearly shows that two deep learning methods (U-NetIM and U-Net model)
have better performance than the traditional ones (KNN and SumThreshold)in RFI
recognition. Compared to the U-Net model, U-NetIM can achieve higher recognition
accuracy without sacrificing false detection rate.
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Figure 3. Evaluation of experiment results with indicators of precision, recall and
F1-score. U-NetIM has the best scores in all aspects of evaluation

The better performance in deep learning methods is mainly due to a fact that the
deep learning is very capable for nonlinear problems. It adopts the nonlinear activation
function "ReLU", which makes it more competent for more complicated tasks. Since
most form of RFIs are nonlinear, in addition, the range and size are always different, it‘s
a challenge for the traditional methods (such as SVD) to retain good results compared
to U-NetIM.

Currently, there is still room for improvement of the speed of running U-NetIM
RFI recognition. In order to be able to effectively process upcoming large data set from
the FAST radio telescope, the next work needs to improve the speed of recognition.
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